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Abstraei The critical behaviour of wavefunctions at the Anderson metal-insulator 
vansition is studied by numerical simulation, using as an aample of a system with 
a mobility edge a two-dimensional light-binding d e l  with spin4rbit scattering. It is 
demonstrated that individual eigeNtal€S have mullifractal fluctuations of their pmtabilily 
density. The influence of these Ructualions on the two-pedicle mmlations b examined 
via dculalions of the wavevector and frequenq dependence of the dillksion mnstant 

1. Jntmduction 

This paper is concerned with the nature of single-particle eigenstates near a mobility 
edge in a disordered conductor. Our aim is to test numerically some current ideas 
about eigenstate fluctuations and correlations. Briefly, these ideas are that individual 
eigenstates have a multifractal amplitude distribution [l, 2,3,4,5,6,7] and that short- 
distance correlations between states close in energy should reflect such fluctuations 
[I, 8,9, IO]. Numerical simulations are clearly more likely to be successful in low- 
dimensional systems. There are two circumstances in which planar systems are hown 
to have a mobility edge: in the presence of a magnetic field strong enough to produce 
the quantum Hall effect, and when spin-orbit scattering is dominant. Studies of a 
model for the quantum Hall effect have been described elsewhere [9,11]. Here 
we present results for behaviour at the mobility edge in a two-dimensional tight- 
binding model with spin-orbit coupling. Related calculations for a continuum model 
have been reported recently [12]. Where comparison is possible, our results are in 
qualitative, but not quantitative agreement with those of 1121 

In general terms, it is reasonable to expect eigenstates at a mobility edge 
to have properties intermediate between those in the insulating and conducting 
phases. Since localized states are pint-like and extended states are space-filling, 
it is plausible that critical eigenstates should have a fractal amplitude distribution[t]. 
A range of approaches [1,3,5,6,7] indicates that the amplitude distribution is, in 
fact, multifractal, in the sense that the different moments of wavefunction amplitudes 
scale with independent powers of system size. Calculations of these generalized fractal 
dimensions for our model are described in section 2 

The low-frequency response of a system to an external probe is determined 
by correlations between eigenstates close in energy. Associated with an energy 
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separation, w ,  k a length scale, L,: the linear size of a finite system in which the 
mean level spacing is equal to w. With p being the density of states per unit energy 
and volume, one has L, = in ddimensiow This length scale k central to 
the behaviour of eigenfunction correlations: over short distances compared with L,, 
correlations reflect multifractal fluctuations of individual eigenstates, whilst over long 
distances, correlations are controlled by relative fluctuations of different eigenstates. 
In section 3 we present evidence for this crossover in OUT model, from calculations of 
the frequency- and wavevector-dependent (w and q respectively) diffusion constant, 
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D(q,w).  
Our starting point is the tight-binding Hamiltonian for spin-1/2 particles 

where lia) denotes the basis state at site i with spin component a. The random site 
energies. ci, are independently and uniformly distributed on [ -w /2 ,  w / 2 ] .  The sites 
are arranged on a square lattice. We take the lattice spacing as our unit of length and 
consider systems of size L x L with periodic bounday conditions in both directions. 
Non-zero hopping matrix elements, viejg, connect only nearest-neighbour pairs i, j 
of sites, and have the form 

yajs = to1 + t i j  . U 
where 1 is a 2 x 2 unit matrix in the spin indices a, p and d is the vector of 
2 x 2 Pauli spin matrices. The choice to = 1 sets the energy scale. Time-reversal 
invariance requires that the components of t i j  are real; we take them independently 
and uniformly distributed in [ - p / 2 , p / 2 ] ,  for each component and each bond i, j. 
Eigenstates of the model are doubly degenerate and lie in a band centred on energy 
E = 0. The phase diagram has been studied previously [13,14] using transfer matrix 
techniques and finite-size scaling. For fixed p (spin-orbit coupling), states at the 
band centre are extended if w is small (weak random potential) and localized if w 
is large (strong random potential). Thus there is a critical line in the w - p plane, 
along which a mobility edge lies at the band centre. Three pain8 on the critical line 
have been identified: w = 7, p = 1 [13]; w = 6.0, p = 0.5; w = 8.5, p = 2.0 
[14]. We use these parameter values in the present work, and examine only those 
states sufficiently dose to the band centre that the localization length at their energies 
is larger than the bite system size. From previous calculations of the localization 
length [13], we know that this requirement is satisfied for the M eigenvalues closest 
to E = 0, provided A4 < 1.6L. 

2. Fluctuations of indhidual eigenstates 

The amplitude distribution of individual eigcnstates can be characterized by the 
scaling with system size of moments of the associated probability density. We obtain 
numerically the eigenvectors, of the Hamiltonian, equation (I), and calculate 
the moments 
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where E, is a sum over spin components, b a sum over sites, and the average, 
(. . .) runs over states within a window (described above) around the mobility edge, 
and also over different realizations of the Hamiltonian with w = 7.0 and p = 1.0 
( 2 o o O , ~ ,  6CHJ.400,400 and M samples, for L = 68, 10, 12, 14 and 18, respectively). 

If P, decreass as a power of the system size, the multifractal exponent [lq, D,, 
is defined via P, N L-(*-r)D*, A natural extension to the special case, q = 1, is to 
define -D, as the slope of 

against log( L). Ex localized states, one expects D, = 0 for all q, whilst for uniformly 
extended states, D, = d, independent of q. Intermediate values of Dq,can be 
interpreted as the generalized dimension of the set of sites on which resides the 
dominant contribution to the qth moment of the probability density. 

Tabk 1. Values delermined for the generalized &tal dimensions, D,. 

Do DI Dz D3 0 4  

1.84 1.63 1.48 1.35 1.18 

The dependence we obtain for log(P,) on log(L) k illustrated in figure 1. The 
resulting exponents, D,, are shown in figure 2 and table 1. There is a clear indication 
of multifractal behaviour for the q-values studied, in the sense that d > D. > 0 and 
that D, varies with q. 

Figure I. Dependence of Pq, the gth moment of 
the probability density, on system size. L. 

Fkgun 2 
hcta l  dimension, on q. 

Dependence of D,, the generalized 
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3. Correlations between eigenstates 

The simplest measure of correlations between eigenstates at different energies is the 
two-particle spectral function, defined by 
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(3) 

where $ a , m ( ~ )  is the amplitude of the mth eigenstate, with energy E, and spin 
component CY at site T. In terms of the Fburier transform 

S(q ;E ,w)  = x e " ' S ( r ; E , w )  
7 

the hydrodynamic (small q, w )  behaviour of the spectral function can be 
parameterized by a wavevector- and 6equency-dependent diffusion constant, 
according to 

Scaling arguments [16.17,18,10] suggest that, at a mobility edge, D ( q , w )  should 
depend only on the variable ( q d / p w )  I (qL , )d .  Its form for qL,  g 1 is 
related to the scaling with distance of the conductivity, and for qL, > 1 is 
dominated by fluctuations of single eigenstates. In two dimensions one expects [IO]: 
D(q,w)  - constant, for qL,  < 1; and D(q,w)  - (qL,)-'J,  for qL,  > 1, with 
q = 1 - D,/2 

We use eigenfunctions and eigenvalues obtained by numerical diagonalization of 
the Hamiltonian, equation (l), to calculate S(q ,w)  at the mobility edge. One of 
the delta functions in the definition, equation (3), is replaced by integration over a 
MITOW energy window and the other is replaced with a gaussian of width U = 4.3L-2, 
comparable to the mean level spacing. The calculations span a range of wavevectors 
(q = (Z? i /L) ( l c , l )  with IC, 1 = 0,1,2) and energies (U = nu with n = 2 ,3 . .  .19), 
and involve an average over 2O00, 400, 100 and 20 samples, for 1 = 8,12,16 and 20, 
respectively. We combine all determinations of S(q,w) relating to a given value of 
the scaling variable, q z / w ,  and extrapolate wS(q,w)  to w = 0, in order to find the 
hydrodynamic behaviour. Fbur such extrapolations are illustrated in figure 3. FmaUy, 
the diffusion constant, extracted from these values of wS(q,w), is displayed as a 
function of the scaling variable, q2/w,  in figure 4. 

4. Discussion 

Our results are much less clear-cut than those from an analogous calculation using a 
model for the quantum Hall effect [9,11]. There are probably two reasons for this. 
First, because of the spin degree of freedom in the present case, we are restricted to 
spatially smaller systems. Second, because in the present case we start from a lattice 
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Figure 3. Extrapolations of wS(q, w )  to the hydrodynamic regime, 6or four values of 
the scaling variable, qz/w.  

I.62/wl 

Figuw 4. Dependence of the diiiusion mnstant on the scaling variable qz/w. ?he data 
p in t s  are values derived f" calculations of wS(p, w),  with ermr ban arising from 
the uncertainty in the extrapolation to the hydrodynamic regime. The lines indicate the 
behaviour apecled theoretically in the small and large qz/w limits, with l e  slope in 
the latter case taken hum our determination of the hctal aponent, D,. 

model, S(q,w)  has an appreciable anisotropy in q-space, except at the smallest q- 
values studied. This naturally complicates the extrapolation to the hydrodynamic 
limit 

Despite these difficulties, there is a plausible indication from the data in figure 4 
that the diffusion constant decreases for large values of the scaling variable, qz /w.  
The rate of decrease is compatible with the value of the fractal exponent, D, = 1.48, 
determined from the properties of single eigenstates. 
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